
3
An Exact Exponential Algorithm for
the 1-Hotlink Assignment Problem

As stated in the introduction, the proposed FPTAS for the 1-HAP makes

use of the exact exponential algorithm presented in [PLS04]. For sake of

completeness, we present a brief overview of this exact algorithm, called PATH.

However, the FPTAS uses it as a ‘black box’ so the reader can skip this section

without compromising the understanding of subsequent content.

With slight abuse of notation, we say that the height of an assignment

A for a tree T is the height of the tree it induces, that is the height of TA.

Given a parameter D selected by the user, the algorithm PATH finds the best

1-assignment among the 1-assignments with height at most D. Therefore, by

executing PATH with D set as the number of nodes of the input tree we can

find an optimal 1-assignment.

A straightforward approach to solving the 1-HAP using dynamic pro-

gramming would be the following. For each node u, we compute the best

non-crossing 1-assignment Au which contains the hotlink (r, u) and then select

the best 1-assignment Au among all u’s. (Notice that as mentioned previ-

ously we can focus only on non-crossing assignments without compromising

the optimality.) However, each assignment Au has a structure that can be ex-

ploited on a dynamic programming fashion due to the following fact: apart

from (r, u), all other hotlinks in Au have both endpoints in T − (Tu ∪ {r}) or

in Tu. If that was not the case, the property that Au is non-crossing would

imply that there is another hotlink in Au starting at r, contradicting the fact

that Au is a 1-assignment. In effect, the task of finding the assignment Au can

then be divided into finding the best assignment for T − (Tu ∪ {r}) and for

Tu separately. Furthermore, T − (Tu ∪ {r}) is a forest composed by the trees

{Tv − Tu}v∈child(r), where child(r) denotes the set children of r in T , so we can

describe this strategy with the following recursion:

OPT(T) = min
u∈T







∑

v∈child(r)

OPT(Tv − Tu) + OPT(Tu)







DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 3. An Exact Exponential Algorithm for the 1-Hotlink Assignment

Problem 19

Informally, it can be proved that if we truncate the recursion at depth D,

this procedure finds an optimal 1-assignment among the 1-assignments with

height at most D in O(nD) time.

As stated before, the time complexity of the PATH algorithm is simply

exponential on the parameter D. For that, PATH uses the following strategy.

For a given input tree rooted at r, it considers only two possibilities: assigning

or not a hotlink from r to some node in Tf , where f is the last child of r in T

(assuming some order). If such a hotlink is not assigned, then we must solve a

subproblem with Tf as an input tree and another subproblem with T − Tf as

an input tree. On the other hand, if a hotlink is assigned from r to some node

in Tf , then we must solve two modified subproblems. In the first subproblem,

the input tree Tf has an additional hotlink available from one level lower than

its root. The second subproblem has T − Tf as an input tree where no hotlink

can be assigned from the root r (since it must be assigned to some node in

Tf). This approach leads to the more general 1-HAPG problem defined below.

Input:

i) a directed path Q = (VQ, EQ) where VQ = {q1, . . . , qk} and EQ =

{(qi, qi+1) : 1 ≤ i ≤ k − 1}

ii) a vector a = (a1, . . . , ak, ak+1, b) ∈ {0, 1}k+2

iii) a tree T = (V,E) rooted at r

iv) an integer D

v) a weight function w, where w(u) is nonzero only if u is a leaf of T

Output: A 1-assignment A to the tree TQ = (VQ ∪ V,EQ ∪ E ∪ {(qk, r)}),

satisfying the following six conditions:

(a) A is feasible in the sense of the 1-HAP

(b) No hotlink can point to a node in VQ

(c) If ai = 0, then no hotlink can leave qi

(d) If ak+1 = 0, then no hotlink can leave r

(e) If b = 0, then no hotlink can point to r

(f) The height of the enhanced tree TA
Q is at most D

Objective: Minimize EP(T ,A,w).

Observe that the 1-HAP is a particular case of the 1-HAPG when Q is

empty, b = a1 = 1, T = T and D is the number of nodes of T . Thus, an exact

algorithm for 1-HAPG is also an exact algorithm for 1-HAP.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 3. An Exact Exponential Algorithm for the 1-Hotlink Assignment

Problem 20

q
3

r (b = 0)

q
4

q
2

q
1

q
3

r (b = 1)

q
4

q
2

q
1
Case 2

Case 1

r (b = 0)

q
1

r (b = 0)

q
2

q
1

f

T
f

(b)
 (c)

(d)
 (e)

q
1
 (a
1
 = 1)

q

q
2
 (a
2
 = 1)

q
3
 (a
3
 = 0)

q
4
 (a
4
 = 1)

r (a
5
 = 1, b = 1)

(a)

Figure 3.1: (a) An instance of the 1-HAPG problem. (b) and (c) two possible
subproblems generated in Case 1. (d) and (e) the decomposition in Case 2
when c = (0, 1, 0, 0, 1).

3.1 Solving 1-HAPG

Figure 3.1 is used throughout this section to illustrate the PATH execu-

tion. Figure 3.1.a presents an instance of 1-HAPG where the path Q consists

of four nodes q1, q2, q3 and q4. If a node qi ∈ Q is such that ai = 1, then qi is

said to be available. The only non-available node, q3, is black colored. Since

a5 = b = 1, hotlinks can be assigned from and to the node r.

We need to introduce the following conventions: given two binary vectors

c and d, we use cd to indicate the vector obtained by concatenating c and d.

For example, if c = (0, 1) and d = (1, 0, 0), then cd = (0, 1, 1, 0, 0). We use ci

to denote the vector obtained by removing all but the ith first components of c.

Using the previous example, c1 = (0) and c2 = (0, 1). We also use |c| to denote

the number of elements (zeros and ones) in the vector c. For a directed path

Q and a node u, we use (Q → u) to indicate the path obtained by inserting u

at the end of Q. We use Qi to denote the subpath of Q formed by its ith first

nodes, and |Q| denote the number of nodes in Q.

Let OPT(Q, a, T , w) denote the cost of an optimal solution of a 1-HAPG

instance. If |Q| > D, then PATH sets OPT(Q, a, T , w) = ∞. Hence, let us

assume that |Q| ≤ D. In order to solve this instance we must consider the

following cases:

Case 1: some hotlink is assigned from a node of Q to r in the optimal

solution;

Case 2: no hotlink is assigned from a nodes of Q to r in the optimal

solution;

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 3. An Exact Exponential Algorithm for the 1-Hotlink Assignment

Problem 21

Case 1. This case is only considered when b = 1. In this case, we must add

a hotlink from some available node to r. Thus, we have
∑k

i=1 ai possibilities.

As an example, if (q1, r) is assigned to the tree of Figure 3.1.a, then PATH

generates the subproblem of Figure 3.1.b. In fact, the addition of hotlink

(q1, r) creates an improved tree where q1 has two children: T and the path

(q2 → q3 → q4). However, since q2, q3 and q4 are not ancestors of nodes with

nonzero weight in this enhanced tree (which must belong to T), they can be

removed without modifying the cost of the solution. Observe that b is set to 0

since we can assume that no two hotlinks point to the same node . In general,

if some hotlink points to r in the optimal solution, we have that

OPT(Q, a, T , w) = min
i∈{1,2,...,k} : ai=1

{

OPT(Qi, ai−1(0, ak+1, 0), T , w)
}

(1)

Case 2. In this case all the available nodes of Q may only point to some

node in V − {r}. Thus, PATH must decide which of the available nodes are

allowed to point to the nodes of T f , the maximal subtree of T rooted at the last

child f of r (assuming any order). Let k′ =
∑k+1

i=1 ai be the number of available

nodes. Then, PATH has 2k′
possibilities to take such a decision. Since it is not

clear which one is the best, then all of them are considered.

In order to clarify this case, let us consider the possibility where q2 and

r remain available for T f (see Figure 3.1.e). As a consequence, only q1 and q4

will be allowed to point to nodes in T −T f (Figure 3.1.d). Figure 3.1.d defines

a new subproblem (Q, a′, T − T f , w), where a′ = (1, 0, 0, 1, 0, 0). Note that b is

set to 0 since we are in Case 2. On the other hand, Figure 3.1.e defines a new

subproblem (Q → r, a′′, T f , w), where a′′ = (0, 1, 0, 0, 1, 1, 1).

Thus, the sum of the optimal solutions for the subproblems defined by

Figures 3.1.d and 3.1.e is the cost of the optimal solution for the problem of

Figure 3.1.a under the assumption that no hotlink can be assigned to r (Case

2), the nodes q2 and r cannot point to nodes in T − T f , and the nodes q1 and

q4 cannot point to nodes in T f .

In general, let C be a set of binary vectors defined by C = {(c1, . . . , ck+1) :

ci ≤ ai for i = 1, . . . , k + 1}. Each c ∈ C corresponds to one of the 2k′

possibilities for selecting the nodes that will remain available to point to nodes

in T f . Furthermore, let c̄ = a− c. This vector defines which nodes from q will

remain available to point to nodes in T − T f . Then, by considering all choices

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 3. An Exact Exponential Algorithm for the 1-Hotlink Assignment

Problem 22

for c, we have that:

OPT(Q, a, T , w) =

min
c∈C

{OPT(Q → r, c(1, 1), T f , w) + OPT(Q, c̄(0), T − T f , w)} (2)

Cases 1 and 2 together. Let RHS1 and RHS2 be respectively the right-

hand side of equations 1 and 2. Thus:

OPT(Q, a, T , w) =

{

RHS2 if b = 0

min{RHS1, RHS2} if b = 1

Stop conditions. If T has only one node, say l, then the best choice is to

assign a hotlink from the first available node in Q to l. Thus:

OPT(Q, a, T , w) =











min{i · w(l) : 1 ≤ i ≤ k and ai = 1}, if Q has some

available node

k · w(l), otherwise

In addition, if |Q| > D then we set OPT(Q, a, T , w) = ∞.

Computational complexity. First, let us analyze the number of generated

subproblems. During this analysis, we consider the instance (Q′, a′, T, w,D) as

the input given by the user for the PATH algorithm, that is, all recursive call

occurred in the execution of PATH were caused by PATH(Q′, a′, T, w,D). In

addition, T has n nodes.

Notice that in a subproblem OPT(Q, a, T , w) the tree T can only take

two forms: (i) it is a subtree Tu of the original tree T , for some node u (ii) it is

a subtree of Tu obtained by removing all the maximal trees rooted at the last

q children of u, for some number q and node u. Clearly there are at most n

trees of form (i). Moreover, σ(u) trees of form (ii) are generated for each node

u of T , where σ(u) is the number of children of u. As T is a tree, it follows

that
∑

u∈T σ(u) = n − 1 and consequently there are n − 1 trees of form (ii).

Hence, n+n−1 = O(n) trees are generated during the execution of PATH. For

each generated subtree, PATH generates all possible path vectors a. Since we

have exactly 2i+2 possible vectors a corresponding to a path Q with i nodes,

the number of generated vectors is given by
∑D

i=0 2i+2 = O(2D). We remark

that for sake of the subproblems, only the length of Q is important and not

its specific constituent nodes. As a result, we have that PATH uses O(n2D)

space.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

Chapter 3. An Exact Exponential Algorithm for the 1-Hotlink Assignment

Problem 23

Finally, we obtain the time complexity of PATH by counting the number

of subproblems checked to calculate each value of OPT(Q, a, T , w). Let r be

the root of T . In the Case 1, PATH checks O(D) subproblems, since we have

O(D) possible hotlinks from a node in Q to r. On the other hand, in Case

2 the number of subproblems checked depends on the number of available

hotlinks in both Q and r. For j available hotlinks, O(2j) subproblems are

checked, since this is the number of possible distributions for these hotlinks

between two subproblems. Moreover, we have O
(

n
(

D+2
j

)

)

subproblems with j

available hotlinks, for j = 0, 1, . . . , D + 2. Hence, using the Binomial Theorem

we have that the time complexity of PATH is given by:

O(n2DD) +
D+2
∑

j=0

O

(

n

(

D + 2

j

)

2j

)

= O(n2DD) + O(n(2 + 1)D+2) = O(n3D)

Theorem 1 Consider an instance (T,w) of the 1-HAP, where T has n nodes.

Given an integer D, the PATH algorithm finds in O(n3D) time an assignment

A∗ satisfying EP(T,A∗, w) ≤ EP(T,A,w) for any assignment A such that the

height of TA is at most D.

DBD
PUC-Rio - Certificação Digital Nº 0611918/CA

